Trio of Infant Planets Discovered around Newborn Star


Summary: Two independent teams of astronomers have uncovered convincing evidence that three young planets are in orbit around an infant star known as HD 163296. Using a new planet-finding strategy, the astronomers identified three discrete disturbances in a young star’s gas-filled disk: the strongest evidence yet that newly formed planets are in orbit there.

Over the past several years, the Atacama Large Millimeter/submillimeter Array (ALMA) has transformed our understanding of protoplanetary disks — the gas- and dust-filled planet factories that encircle young stars. The rings and gaps in these disks provide intriguing circumstantial evidence for the presence of planets. Other phenomena, however, could account for these tantalizing features.

Using a new planet-hunting technique that identifies unusual patterns in the flow of gas within a protoplanetary disk, two teams of astronomers have confirmed the distinct, telltale hallmarks of newly formed planets orbiting an infant star in our galaxy. These results are presented in a pair of papers appearing in the Astrophysical Journal Letters.

“We looked at the localized, small-scale motion of gas in a star’s protoplanetary disk. This entirely new approach could uncover some of the youngest planets in our galaxy, all thanks to the high-resolution images coming from ALMA,” said Richard Teague, an astronomer at the University of Michigan and principal author on one of the papers.

To make their respective discoveries, each team analyzed the data from various ALMA observations of the young star HD 163296. HD 163296 is about 4 million years old and located about 330 light-years from Earth in the direction of the constellation Sagittarius.

Rather than focusing on the dust within the disk, which was clearly imaged in an earlier ALMA observation, the astronomers instead studied the distribution and motion of carbon monoxide (CO) gas throughout the disk. Molecules of CO naturally emit a very distinctive millimeter-wavelength light that ALMA can observe. Subtle changes in the wavelength of this light due to the Doppler effect provide a glimpse into the kinematics – or motion – of the gas in the disk.

If there were no planets, gas would move around a star in a very simple, predictable pattern known as Keplerian rotation.

“It would take a relatively massive object, like a planet, to create localized disturbances in this otherwise orderly motion,” said Christophe Pinte of Monash University in Australia and lead author on one of the two papers. “Our new technique applies this principle to help us understand how planetary systems form.”

The team led by Teague identified two distinctive planet-like patterns in the disk, one at approximately 80 astronomical units (AU) from the star and the other at 140 AU. (An astronomical unit is the average distance from the Earth to the Sun, or about 150 million kilometers.) The other team, led by Pinte, identified the third at about 260 AU from the star. The astronomers calculate that all three planets are similar in mass to Jupiter.

The two teams used variations on the same technique, which looked at anomalies in the flow of the gas – as seen in the shifting wavelengths of the CO emission — that would indicate it was interacting with a massive object.

Teague and his team measured variations in the gas’s velocity. This revealed the impact of multiple planets on the gas motion nearer to the star.

Pinte and his team more directly measured the gas’s actual velocity, which is a better method for studying the outer portion of the disk and can more accurately pinpoint the location of a potential planet.

Detecting protoplanets

“Though thousands of exoplanets have been discovered in the last few decades, detecting protoplanets is at the frontier of science,” said Pinte. The techniques currently used for finding exoplanets in fully formed planetary systems — such as measuring the wobble of a star or how a transiting planet dims starlight — don’t lend themselves to detecting protoplanets.

ALMA’s stunning images of HD 163296 and other similar systems have revealed intriguing patterns of concentric rings and gaps within protoplanetary disks. These gaps may be evidence that protoplanets are plowing the dust and gas away from their orbits, incorporating some of it into their own atmospheres. A previous study of this particular star’s disk shows that the dust and gas gaps overlap, suggesting that at least two planets have formed there.

Source link


Please enter your comment!
Please enter your name here