Optimising the transport properties and reactivity of microbially-synthesised magnetite for in situ remediation

0
16


  • 1.

    Zhang, W. X. & Elliot, D. W. Applications of iron nanoparticles for groundwater remediation. Remediation1 6, 7–21 (2006).

  • 2.

    Mueller, N. C. et al. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res Int. 19, 550–558 (2012).

  • 3.

    Majiewsky, P. & Thierry, B. Functionalized magnetite nanoparticlessynthesis, properties, and bio-applications. Crit. Rev. Solid State Mater. Sci. 32(3), 203–215 (2007).

  • 4.

    Hildebrand, H., Mackenzie, K. & Kopinke, F. Highly active Pd-on-magnetite nanocatalysts for aqueous phase hydrodechlorination reactions. Environ. Sci. Technol. 43, 3254–3259 (2009).

  • 5.

    Ponder, S. et al. Surface chemistry and electrochemistry of supported zero-valent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater. 13, 479 (2001).

  • 6.

    Li, X., Elliott, D. W. & Zhang, W. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State Mater. Sci. 31, 111–122 (2006).

  • 7.

    Zhang, W. X. Nanoscale iron particles for environmental remediation: an overview. J. Nanoparticle Res. 5, 323 (2003).

  • 8.

    Lee, W. & Batchelors, B. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ. Sci.Technol. 36, 5147–5154 (2002).

  • 9.

    Lovley, D. R., Stolz, J. F., Nord, G. L. & Phillips, E. J. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 330, 252–254 (1987).

  • 10.

    Byrne, J. M., Muhamadali, H., Coker, V., Cooper, J. & Lloyd, J. R. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens. J Royal Soc. Inter. 12, https://doi.org/10.1098/rsif.2015.0240 (2015).

  • 11.

    Cutting, R. S. et al. Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens. Environ Sci. Technol. 46, 12591–12599 (2012).

  • 12.

    Watts, M. P. et al. Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst; impact of electron donor and aqueous geochemistry. Applied Catalysis B: Environ. 170–171, 162–172 (2015).

  • 13.

    Crean, D. E. et al. Engineering biogenic magnetite for sustained Cr(VI) remediation in flow-through systems. Environ. Sci. Technol. 46, 3352–3359 (2012).

  • 14.

    Watts, M. et al. Highly efficient degradation of organic pollutants using a microbially-synthesizednanocatalyst. Int. Biodeteriorat.Biodegradation 119, 255–261 (2016).

  • 15.

    Muhamadali, H. et al. Metabolic profiling of Geobacter sulfurreducens during scale-up. Appl. Environ. Microbiol. 81, 3288–3298 (2015).

  • 16.

    Telling, N. D. et al. Remediation of Cr(VI) by biogenic magnetic nanoparticles: An x-ray magnetic circular dichroism study. Appl. Phys Lett. 95, 163701 (2009).

  • 17.

    Tratnyek, P. G. & Johnson, R. L. Nanotechnologies for environmental cleanup. Nano Today. 1(2) 1, 44–48 (2006).

  • 18.

    Noubactep, C., Caré, S. & Crane, R. Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut. 223(3), 1363–1382 (2012).

  • 19.

    Kanel, S. R., Manning, B., Charlet, L. & Choi, H. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 39, 1291–1298 (2005).

  • 20.

    Wu, W., He, Q. & Jiang, C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett. 3, 397–415 (2008).

  • 21.

    Si, S. et al. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem. Mater. 16, 3489–3496 (2004).

  • 22.

    Velimirovic, M. et al. Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane. J Contam Hydrol. 164, 88–89 (2014).

  • 23.

    Zhu, A., Yuan, L. & Liao, T. Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan. Int. J Pharm. 350, 361–368 (2008).

  • 24.

    White, B. R., Stackhouse, B. T. & Holcombe, J. A. Magnetic γ-Fe2O3 nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J Haz. Mater. 161, 848–853 (2009).

  • 25.

    Li, Y., Xiu, Z., Li, T. & Jin, Z. Stabilization of Fe0 nanoparticles with silica for enhanced transport and remediation of hexavalent chromium in groundwater. ACS symposiumseries 1124, chap 17, 307–326 (2013).

  • 26.

    Sakulchaicharoen, N., O’Carroll, D. M. & Herrera, J. E. Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J.Contam. Hydrol. 25, 117–127 (2010).

  • 27.

    Johnson, R. L., Johnson, G. O. B., Nurmi, J. T. & Tratnyek, P. G. Natural organic matter enhanced mobility of nano zerovalent iron. Environ. Sci. Technol. 43, 5455–5460 (2009).

  • 28.

    Grilloa, R., Rosaa, A. H. & Fracetoa, L. F. Engineered nanoparticles and organic matter: A review of the state-of-the-art. Chemosphere 119, 608–619 (2015).

  • 29.

    Becker, M. D. et al. In situ measurement and simulation of nano-magnetite mobility in porous media subject to transient salinity. Nanoscale 18, 1047–1057 (2014).

  • 30.

    Laumann, S., Micić, V., Lowry, G. V. & Hofmann, T. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environ. Pollution 179, 53–60 (2013).

  • 31.

    Kim, H. J., Phenrat, T., Tilton, R. D. & Lowry, G. V. Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Collid Interphase Sci. 370, 1–10 (2012).

  • 32.

    Saleh, N. et al. Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ. Eng. Science 24(1), 45–57 (2006).

  • 33.

    Coker, V. S. et al. Microbial engineering of nanoheterostructures: biological synthesis of a magnetically recoverable palladium nanocatalyst. ACS Nano. 4, 2577–2584 (2010).

  • 34.

    Coker, V. S. et al. Time-resolved synchrotron powder X-ray diffraction study of magnetite formation by the Fe(III)-reducing bacterium Geobacter sulfurreducens. The American Mineralogist 93(4), 540–547 (2008).

  • 35.

    Byrne, J. M. et al. Control of nanoparticle size, reactivity and magnetic properties during the bio production of magnetite by Geobacter sulfurreducens. Nanotechnology 22, 455209 (2011).

  • 36.

    Sriithiyapakorn, S. & Keller, A. Transport of colloids in saturated porous media: a pore-scale observation of the size exclusion effect and colloid acceleration. Water Resources Res. 39(4), https://doi.org/10.1029/2002WR001583 (2003).

  • 37.

    Lear, G. et al. Probing the biogeochemical behavior of technetium using a novel nuclear imaging approach. Environ. Sci. Technol. 44(1), 156–162 (2010).

  • 38.

    Velimirovic, M. et al. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. Sci. total Env. 563–564, 713–723 (2016).

  • 39.

    Laurent, S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Review 108, 2064–2110 (2008).

  • 40.

    Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4022 (2005).

  • 41.

    Mui, J., Ngo, J. & Kim, B. Aggregation and colloidal stability of commercially available Al2O3 annoparticles in aqueous environments. Nanomaterials 6, https://doi.org/10.3390/nano6050090 (2016).

  • 42.

    Elimelech et al. Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ. Sci Technol. 34, 2143–2148 (2000).

  • 43.

    Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D. & Lowry, G. V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 41(1), 284–290 (2007).

  • 44.

    Phenrat, T. et al. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res. 10, 795–814 (2008).

  • 45.

    Tiraferri, A., Che, K., Sethi, R. & Elimelech, M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J. Colloid Interface Sci. 324, 71–79 (2008).

  • 46.

    Loosli, F., Coustumer, P. & Stoll., S. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water Res. 47(16), 6052–6063 (2013).

  • 47.

    Dong, H. & Lo, I. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid. Water Res. 1, 2489–2496 (2013).

  • 48.

    Coker, V. S. et al. Cr(VI) and azo dye removal using a hollow-fibre membrane system functionalized with a biogenic Pd-magnetite catalyst. Environ Technol. 35(5–8), 1046–54 (2014).

  • 49.

    Cutting, R. S. et al. Optimizing Cr(VI) and Tc(VII) remediation through nanoscale biomineral engineering. Environ. Sci. Technol. 44, 2577–2584 (2010).

  • 50.

    Petriea, B., Barden, R. & Kasprzyk-Horderna, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72, 3–27 (2015).

  • 51.

    Fontana, L. et al. The effects of palladium nanoparticles on the renal function of female Wistar rats. Nanotoxicol. 9, 843–851 (2015).

  • 52.

    Macaskie, L. et al. Today’s wastes, tomorrow’s materials for environmental protection. Hydrometallurgy 104, 483–487 (2010).

  • 53.

    Cutting, R. S., Coker, V. S., Fellowes, J. W., Lloyd, J. R. & Vaughan, D. J. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochimica et Cosmochimica Acta 73, 4004–4022 (2009).

  • 54.

    Lovley, D. R. & Phillips, E. J. P. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. Appl. Environ. Microbiol. 52, 751–757 (1986).

  • 55.

    Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in the multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).

  • 56.

    Stookey, L. L. Ferrozine-a new spectrophotometric reagent for iron. Analytical Chemistry 42, 779–781 (1970).

  • 57.

    Yang, X., Flynn, R., Von der, K. F. & Hofmann, T. Quantifying the influence of humic acid adsorption on colloidal microsphere deposition onto iron oxide coated sand. Environ Pollut. 158, 3498E3506 (2010).

  • 58.

    Skougstad, M., Friedman, L. C., Erdman, D. E. & Duncan, S. S. Method for determination of inorganic substances in water and fluvial sediments. USGS, 545 (1979).



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here